Home Work I (i)

I. From the definition $m^*(A)$, show that $m^*(A) = \inf\{m(G): opm G \ge A\}$ $= \inf\{m(G): opm G + G_0 \ge G \ge A\}$,

whenever G_0 is an open set confaining A.

2. Let $E \subseteq G$. Show that, $\forall U \subseteq R$, $E \cap U = E \cap (U \cap G)$

and $mt(E a(unG)) \leq mt(E a u)$

3. Let $M \neq E \subseteq (a,b) \subseteq R$ and E > 0. Show that \exists disjoint open intervals $T_1, T_2, \cdots T_n \text{ contained in } (a,b) \text{ s.t.}$ $m(E \triangleleft U T_i) < E,$ in two methods: (a) Using Q1 (b) Using Q2 (and (i)⇒(iv) of the 1st principle of Littlewood for m*(E)<+∞)